Speeding Carbon Dioxide Capture -The Key to Better Energetics

Lawrence Livermore National Laboratory

University of Illinois, Urbana-Champaign

The Babcock and Wilcox Company

LLNL-PRES-499751

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC Roger D. Aines, Felice Lightstone, Joe Satcher, Bill Bourcier, Joshuah Stolaroff, LLNL

George Farthing Babcock and Wilcox

Jennifer Lewis, University of Illinois

Carbonic anhydrase is one of the most rapid enzymes known - it was first discovered in human lungs, where it facilitates CO₂ exhalation

Carbonic anhydrase appears to have evolved independently five times, and has hundreds of structural variants

The problem for today – carbon dioxide separation is too slow

- Separating pure CO₂ from industrial sources, or from the atmosphere, is a slow chemical reaction
- This requires large process equipment and long times, leading to high costs
 - Separation from natural gas power is 3-4x slower than coal
 - Separation from air is 300x slower than from coal flue gas
- Water-based liquids separate CO₂ from other gases with very high efficiency because CO₂ is very soluble in water

We have focused on using natural analgues to beat the speed limit

- Faster, rugged catalysts that survive industrial conditions
- Tethering of catalysts to the air-water interface
- Encapsulation to provide high surface area and confine solvent

And we are examining processes that utilize solid bicarbonate

25% exchangeable CO₂ by weight

The transfer of CO_2 into water or other liquids is almost always dominated by chemical reactions at the liquid interface

Lawrence Livermore National Laboratory
Lawrence Livermore National Laboratory

First we want a general approach for mimicking enzymes with small molecules - then to apply it to CO₂ capture

CA Structure & Function: His triad, axial –OH, coordinate Zn^{2+} center, key amino acids bind CO_2

Mimics: optimize metal and ligand identity to improve kinetics Carbonic Anhydrase

Zn²⁺/His triad active site

We have created mimic catalysts that they are stable at 100°C, and their rate increases with temperature

Catalyst	Buffer	Temp (C)	K _{cat}
Zn(BF ₄) ₂ ctrl	Hepes, phenol red, pH = 7.5	T _r	7
Cyclen-Zn	Hepes, phenol red, pH = 7.5	T _r	540
Cyclen-Zn	Hepes, phenol red, pH = 7.5	Post 18 h, 100 C	900
Cyclen-Zn	AMPSO, thymol blue, pH = 9.0	T _r	2500
Cyclen-Zn	AMPSO, thymol blue, pH = 9.0	Post 18h, 100 C	2260
Cyclen-Zn	AMPSO, thymol blue	50C	11,500

Demonstrated stability and enhanced kinetics for cyclen at elevated temperature and pH conditions

Our mimics are faster at higher temperatures

9 LLNL-PRES-499751

And stable up to at least 120°C

Lawrence Livermore National Laboratory

10 LLNL-PRES-499751

The catalyst can be formed from zinc carbonate, indicating that carbonate solutions will not scavenge the zinc

But we still have to deal with the surface transfer issue

Lawrence Livermore National Laboratory
Lawrence Livermore National Laboratory

The trick is tethering the catalyst to the liquid/gas interface – again nature is our example

Polyethyleneglycol (PEG) linkers do not deform the catalysts and appear to be appropriate for tethering to hydrophobic groups

PE G

> ~50 PEG units keep the catalyst removed from the immediate surface

Lawrence Livermore Natic

Catalysis is not the only speedenhancer – surface area is critical

We can create encapsulated solvents analogous to alveoli in size and function

Concept: Encapsulate liquid solvents such as MEA in a thin, permeable, polymer shell.

Initial Goals

✓ Reduced volatility

✓ Degradation products contained

Additional Benefits

✓ Increased surface area

✓ Good interface with capture catalysts

 ✓ Facilitates new chemistries, especially high viscosity

We have pursued microcapsules made from a photocurable silicone (Semicosil)

Inner fluid: 5 wt% PEO solution in water with green dye Middle fluid: Unmodified Semicosil A & B (10:1) Outer fluid:

2 wt% PVA, 34 wt% H₂O, 64 wt% glycerol

Successful fabrication of microcapsules with Semicol UV curable silicon

Microcapsule production requires balanced fluid properties

Capillary	ID (μm)	OD (μm)	Fluid	Viscosity (cP)	Flow rate (µl h ⁻¹)
Injection	50	1000	Inner Fluid	10-50	200-800
Collection	500	1000	Middle Fluid	10-50	200-800
Square	1000	1200	Outer Fluid	100-500	2000-3500

Formation of double emulsions within microfluidic device using methods as described by the Weitz group

Our current process runs at 250 capsules per second – too fast for this movie!

We have encapsulated multiple solvents in silicone capsules – with and without added catalyst

Carbonate solvents show carbon capture amounts of over 3 moles CO_2 per liter of solvent (13 wt % CO_2)

- Plot shows the increase in carbon content as 30 wt % (4m) Na2CO3 reacts with flue gas.
- Calculated carbon capacity is the maximum possible per 1000g H2O in solvent. Still need to get it back out.
- Most of the carbon capacity comes at PCO₂>0.001.
- Nahcolite doubles carbon capacity.

Why attempt high pressure recovery with solids present?

- High PCO2
 - Less energy to compress CO2
 - Less water boiled
 - Less carbon transfer per unit of solvent
- Low PCO2
 - More energy to compress gas
 - More water boiled
 - More carbon transfer per unit of solvent

30 wt % (4M) Sodium Carbonate (1) – Phase behavior

in kJ per mole of CO2 removed

Speeding carbon dioxide absorption will enable low energy process approaches

- Faster, rugged catalysts that survive industrial conditions
- Tethering of catalysts to the air-water interface
- Encapsulation to provide high surface area and confine solvent, permit solids formation

